Rectified 7-simplex


7-simplex

Rectified 7-simplex

Birectified 7-simplex

Trirectified 7-simplex
Orthogonal projections in A7 Coxeter plane

In seven-dimensional geometry, a rectified 7-simplex is a convex uniform 7-polytope, being a rectification of the regular 7-simplex.

There are four unique degrees of rectifications, including the zeroth, the 7-simplex itself. Vertices of the rectified 7-simplex are located at the edge-centers of the 7-simplex. Vertices of the birectified 7-simplex are located in the triangular face centers of the 7-simplex. Vertices of the trirectified 7-simplex are located in the tetrahedral cell centers of the 7-simplex.

Contents

Rectified 7-simplex

Rectified 7-simplex
Type uniform polyexon
Schläfli symbol t1{3,3,3,3,3,3}
Coxeter-Dynkin diagrams
6-faces 16
5-faces 84
4-faces 224
Cells 350
Faces 336
Edges 168
Vertices 28
Vertex figure 6-simplex prism
Petrie polygon Octagon
Coxeter group A7, [36], order 40320
Properties convex

Alternate names

Coordinates

The vertices of the rectified 7-simplex can be most simply positioned in 8-space as permutations of (0,0,0,0,0,0,1,1). This construction is based on facets of the rectified 8-orthoplex.

Images

orthographic projections
Ak Coxeter plane A7 A6 A5
Graph
Dihedral symmetry [8] [7] [6]
Ak Coxeter plane A4 A3 A2
Graph
Dihedral symmetry [5] [4] [3]

Birectified 7-simplex

Birectified 7-simplex
Type uniform polyexon
Schläfli symbol t2{3,3,3,3,3,3}
Coxeter-Dynkin diagrams
6-faces 16:
8 t1{35}
8 t2{35}
5-faces 112:
28 {34}
56 t1{34}
28 t2{34}
4-faces 392:
168 {33}
(56+168) t1{33}
Cells 770:
(420+70) {3,3}
280 {3,4}
Faces 840:
(280+560) {3}
Edges 420
Vertices 56
Vertex figure {3}x{3,3,3}
Coxeter group A7, [36], order 40320
Properties convex

Alternate names

Coordinates

The vertices of the birectified 7-simplex can be most simply positioned in 8-space as permutations of (0,0,0,0,0,1,1,1). This construction is based on facets of the birectified 8-orthoplex.

Images

orthographic projections
Ak Coxeter plane A7 A6 A5
Graph
Dihedral symmetry [8] [7] [6]
Ak Coxeter plane A4 A3 A2
Graph
Dihedral symmetry [5] [4] [3]

Trirectified 7-simplex

Trirectified 7-simplex
Type uniform polyexon
Schläfli symbol t3{3,3,3,3,3,3}
Coxeter-Dynkin diagrams
6-faces 16 t2{3,3,3,3,3}
5-faces 112
4-faces 448
Cells 980
Faces 1120
Edges 560
Vertices 70
Vertex figure {3,3}x{3,3}
Coxeter group A7, [[36]], order 80640
Properties convex, isotopic

Alternate names

Coordinates

The vertices of the trirectified 7-simplex can be most simply positioned in 8-space as permutations of (0,0,0,0,1,1,1,1). This construction is based on facets of the trirectified 8-orthoplex.

Images

orthographic projections
Ak Coxeter plane A7 A6 A5
Graph
Dihedral symmetry [8] [[7]] [6]
Ak Coxeter plane A4 A3 A2
Graph
Dihedral symmetry [[5]] [4] [[3]]

Related polytopes

These polytopes are three of 71 uniform 7-polytopes with A7 symmetry.


t0

t1

t2

t3

t0,1

t0,2

t1,2

t0,3

t1,3

t2,3

t0,4

t1,4

t2,4

t0,5

t1,5

t0,6

t0,1,2

t0,1,3

t0,2,3

t1,2,3

t0,1,4

t0,2,4

t1,2,4

t0,3,4

t1,3,4

t2,3,4

t0,1,5

t0,2,5

t1,2,5

t0,3,5

t1,3,5

t0,4,5

t0,1,6

t0,2,6

t0,3,6

t0,1,2,3

t0,1,2,4

t0,1,3,4

t0,2,3,4

t1,2,3,4

t0,1,2,5

t0,1,3,5

t0,2,3,5

t1,2,3,5

t0,1,4,5

t0,2,4,5

t1,2,4,5

t0,3,4,5

t0,1,2,6

t0,1,3,6

t0,2,3,6

t0,1,4,6

t0,2,4,6

t0,1,5,6

t0,1,2,3,4

t0,1,2,3,5

t0,1,2,4,5

t0,1,3,4,5

t0,2,3,4,5

t1,2,3,4,5

t0,1,2,3,6

t0,1,2,4,6

t0,1,3,4,6

t0,2,3,4,6

t0,1,2,5,6

t0,1,3,5,6

t0,1,2,3,4,5

t0,1,2,3,4,6

t0,1,2,3,5,6

t0,1,2,4,5,6

t0,1,2,3,4,5,6

See also

References

External links